Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sophie H. Dale and Mark R. J.

 Elsegood*Chemistry Department, Loughborough University, Leicestershire LE11 3TU, England

Correspondence e-mail:
m.r.j.elsegood@lboro.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.143$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[diaquacalcium(II)]- μ_{3}-terephthalato-μ_{2}-aqua] at 150 K

The title compound, $\left[\mathrm{Ca}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, has been previously studied by single-crystal X-ray diffraction at both room temperature [Matsuzaki \& Iitaka (1972). Acta Cryst. B28, 1977-1981] and 173 K [Groeneman \& Atwood (1999). Cryst. Eng. 2, 241-249.]. We present here a redetermination of the compound at 150 K , which results in a considerably improved precision and the location of H atoms in the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), calcium benzene-1,4-dicarboxylate (terephthalate) trihydrate $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{CaO}_{7}, \mathrm{Ca}[\mathrm{TA}] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$, has been previously studied at both room temperature (Matsuzaki \& Iitaka, 1972) and 173 K (Groeneman \& Atwood, 1999) using single-crystal X-ray diffraction, without the location of H atoms involved in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in either case.

We have redetermined this structure at 150 K (Fig. 1), finding the same one-dimensional coordination polymeric structure linked into a three-dimensional array by a network of hydrogen bonds (Fig. 2). Bond lengths were found to be similar to those in the earlier determinations (Table 1); however, we have successfully located the H atoms involved in the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and vastly improved the precision of the structure $\left[R 1\left(F^{2}>2 \sigma\left(F^{2}\right)=\right.\right.$ 0.054 at 150 K , compared with $R 1=0.110$ at 173 K and $R 1=0.135$ at room temperature].

Experimental

Terephthalic acid and CaCO_{3} were refluxed together in a 1:1 ratio in $\mathrm{H}_{2} \mathrm{O}$ for 18 h . Colourless X-ray-quality crystals of the title compound were grown by the slow cooling of this solution. IR $\left(\mathrm{KBr}, \nu_{\max }, \mathrm{cm}^{-1}\right)$: 3419 (br, OH), 1634 (aromatic $\mathrm{C}=\mathrm{C}$), 1574 (asymmetric $\mathrm{CO}_{2}{ }^{-}$), 1505 (aromatic $\mathrm{C}=\mathrm{C}$), 1402 and 1389 (symmetric $\mathrm{CO}_{2}{ }^{-}$), 1312, 1155, 1103 and $1026(\mathrm{C}-\mathrm{O}), 826$ and 755 (aromatic $\mathrm{C}-\mathrm{H}), 559,515$.

Received 30 June 2003
Accepted 7 July 2003
Online 17 July 2003

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=258.24$
Monoclinic, $P 2_{1} / c$
$a=7.0455(15) \AA$
$b=21.623(4) \AA$
$c=6.562(13) \AA$
$\beta=92.831(3)^{\circ}$
$V=998.5(3) \AA^{3}$
$Z=4$
$M_{r}=258.24$
Monoclinic, $P 2_{1} / c$
$b=21.623$ (4) \AA
$c=6.5622$ (13) A
$\beta=02.831$ (3) ${ }^{\circ}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Narrow frame ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.632, T_{\text {max }}=0.968$
8282 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.143$
$S=1.05$
2362 reflections
163 parameters
H atoms refined by a mixture of constrained and independent refinement

$$
\begin{aligned}
& D_{x}=1.718 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 2161
reflections
$\theta=2.9-27.9^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Column, colourless
$0.78 \times 0.06 \times 0.05 \mathrm{~mm}$

2362 independent reflections
1751 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=28.7^{\circ}$
$h=-8 \rightarrow 9$
$k=-29 \rightarrow 28$
$l=-8 \rightarrow 8$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0811 P)^{2}\right.$ $+0.4161 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.40 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ca} 1-\mathrm{O} 2$	$2.339(2)$	$\mathrm{Ca} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.479(2)$
$\mathrm{Ca} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.357(2)$	$\mathrm{Ca} 1-\mathrm{O} 5$	$2.498(2)$
$\mathrm{Ca} 1-\mathrm{O} 6$	$2.368(2)$	$\mathrm{Ca} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.526(2)$
$\mathrm{Ca} 1-\mathrm{O} 7$	$2.380(3)$	$\mathrm{Ca} 1-5^{\mathrm{v}}$	$2.633(2)$

Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $x, y, z-1$; (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4{ }^{\text {vi }}$	0.80 (2)	1.93 (2)	2.717 (3)	172 (4)
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O}^{\text {vii }}$	0.80 (2)	1.97 (2)	2.755 (3)	167 (4)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {vii }}$	0.81 (2)	1.93 (2)	2.737 (3)	173 (4)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4^{\text {viii }}$	0.80 (2)	1.98 (2)	2.754 (3)	162 (4)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\text {ix }}$	0.80 (2)	2.13 (2)	2.914 (3)	165 (4)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O}^{\mathrm{x}}$	0.81 (2)	2.12 (3)	2.898 (3)	164 (4)

Symmetry codes: (vi) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vii) $-x, 2-y, 1-z$; (viii) $-x, 2-y, 2-z$; (ix) $1-x, 2-y, 2-z ;(x) 1-x, 2-y, 1-z$.

Aromatic H atoms were placed in calculated positions and refined as riding, with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$, while the coordinates of the water H atoms were located in a difference Fourier map and refined using geometric restraints. $U_{\text {iso }}$ values were set to $1.2 U_{\text {eq }}$ for aryl H atoms and $1.5 U_{\text {eq }}$ for water H atoms. The one residual peak greater than $1 \mathrm{e}^{-3}$ is $1.08 \AA$ from atom Ca 1 .

Figure 1
View of (I), showing the atom-labelling scheme and the one-dimensional array formed by the bridging terephthalate anions and water molecules. Displacement ellipsoids are drawn at the 50% probability level. Aromatic H atoms have been omitted for clarity, and water H atoms are represented by circles of arbitrary radii. [Symmetry codes: (i) $x, \frac{3}{2}-y$, $z-\frac{1}{2}$; (ii) $x, y, z-1$; (iii) $x, \frac{3}{2}-y, z-\frac{3}{2}$; (iv) $x, y, z-2$.]

Figure 2
Packing plot of (I), viewed along the c axis, showing the threedimensional structure produced by the linking of one-dimensional coordination polymers by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. Hydrogen bonds are represented by dashed lines.

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We acknowledge the EPSRC for the provision of a studentship (SHD).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Groeneman, R. H. \& Atwood, J. L. (1999). Cryst. Eng. 2, 241-249.
Matsuzaki, T. \& Iitaka, Y. (1972). Acta Cryst. B28, 1977-1981.
Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

